


# Computer Science Curriculum: KS3

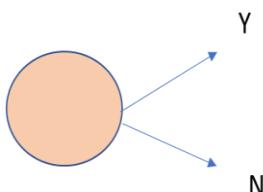


# Curriculum Intent

We **serve** our students with an adaptive curriculum that meets the needs of all. Our different subjects have carefully identified plans outlining, what they teach and why. This is shared with all students, staff and parents to empower our community in their learning journey and includes careful consideration of sequencing of knowledge and skills. Cardinal Pole is committed to providing **opportunities** for staff and students to become life-long lovers of learning through personalised feedback, opportunities for reflection and progression. We are a community of **aspirant** learners where teachers are experts and students are critical scholars. This is achieved through absolute clarity of expectations and constant re-evaluation of needs through a shared language. We **reward** our community of learners by celebrating the successes, progress and achievements of all.

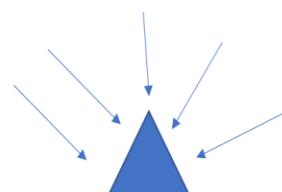
# How do all Computer Science lessons start? (Ready to Learn)

All lessons at Cardinal Pole start with a 'Ready to Learn' activity. The purpose of this is to support retrieval and prepares students for the lesson with recalling relevant knowledge. This activity is printed for students and handed out at the door. Students are expected to sit at their desk immediately and complete the task before sticking it in their books while the teacher welcomes the class and takes the register.


Ready to Learn activities in Computer Science look like this:

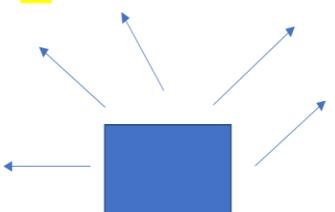
## DO NOW TASK

YR8


DATE:

Q1



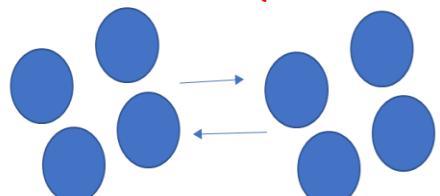

An algorithm is a set of instructions used to solve a problem.

Q2



Why do we need to understand an algorithm?

Q3




What would happen to a Python Code if you use `for i in range (10), print "x"`?

DIVERGENT QUESTIONS

CONVERGENT QUESTIONS

Q4



Why will you use WHILE LOOP instead of IF command?

EVALUATIVE QUESTIONS

# Y7 Computer Science

## Application of computational thinking

Problem solving real life scenarios in Flowol; control systems using sensors

## How do computers process data?

Define Binary; apply binary conversions

## How do you build a computer?

Inputs, processes and outputs; introduction of computer components

## How can Scratch be used to make a game?

Using coordinates in programming; randomisation; independent creation of a game

## Programming Scratch

Using variables to hold values; understanding components of programming structure

## How are computers used today?

The role of computers in different sectors

## Where does computing come from?

The history of the computer

## What are the different strategies of computational thinking?

Abstraction; pattern recognition; decomposition; algorithmic thinking

## How do storage devices use binary?

How can you apply your knowledge of binary to other storage devices?

## Introduction to Scratch

How to access Scratch; Sequencing instructions; Scratch interface; controlling the sprite

## How might computers be used in the future?

Is AI the future? Debating the pros and cons of artificial intelligence

## How does a computer work?

Inputs and outputs; storage; file management

# How is your progress measured in class in Computer Science in Autumn Term?

## Autumn: Becoming a Computer scientist

|                                                                                                                              |                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple Choice Quiz                                                                                                         | Knowledge recall on topic (15 marks): <ul style="list-style-type: none"><li>• How are files stored for later use?</li><li>• Where does computing come from?</li><li>• How does a computer work?</li><li>• How are computers used today?</li></ul> |
| Bi-weekly Quiz<br>1 Extended written response<br>Various retrieval questions (MCQs)<br>Tracked using RED/AMBER/GREEN Tracker | <ul style="list-style-type: none"><li>• How might computers be used in the future?</li><li>• How can computers and users be protected from malware harm? Understand other dangers - e-safety, cyberbullying and grooming</li></ul>                |

| Emerging                                                                                         | Achieving                                                                                      | Excelling                                                                                        |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| I can follow simple instructions to complete a basic task like creating folders and saving files | I can use the terms to explain how my files are organised and identify some file formats       | I can correctly organise my files into folders and name them.                                    |
| I can mention some of the inventors of computers.                                                | I can recall and use a timeline to show part of the History of Computing                       | I can add extra data such as dates and years to the timeline.                                    |
| I can safely use my password and know how to be safe online.                                     | I understand a weak and strong password and know what to do when faced with a e-safety threat. | I can create a presentation and give advice to my peers about the dangers of online interaction. |

# How does a computer work: Autumn Term

## *Golden Nuggets and Work Hard*

|    | <b>Golden Nugget</b>                                                                                | <b>Work Hard</b>                                                                                                            |
|----|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1  | Understand how to save and store my work on the computer                                            | Create YR7 folders for different subject areas and begin to save files into them using correct labels.                      |
| 2  | Know how computer development started and where we are now.                                         | Use the reference page to complete the 'History of Computing' timeline.                                                     |
| 3  | How keyboard, mouse, monitor and other hardware component make a computer work?                     | Research different components that make up a computer – their names and functionality.                                      |
| 4  | Know how computers are used in finance, banking, education, transport etc                           | Identify and explain how the elements of computer input-output-storage are applied in different modern machines and sectors |
| 6  | How Artificial Intelligence will help us become more useful in the future.                          | Collect data and use it to model how AI can quickly be applied to different real word solutions                             |
| 7  | Know that some viruses and malware exist and how they can harm humans, networks and mobile devices. | Identify and explain different types of computer viruses and show understanding of how they are transmitted.                |
| 8  | Why is using a strong password important?                                                           | Know why and methods we can use strong passwords to protect our files, network and devices?                                 |
| 9  | Know that digital footprints can be dangerous as they can track our activities online.              | Identify possible places you have left your digital footprint and risks associated with them.                               |
| 10 | Understand that cyberbullying can affect you and others.                                            | Determine from different scenarios when someone is cyberbullied and select the correct approach.                            |
| 11 | Recognise when someone is being groomed and know how to reduce the risk of becoming a victim.       | Explain what you understand by the term grooming and highlight ways you can reduce the risk of grooming.                    |

# How is your progress measured in class in Computer Science in Spring Term?

## Autumn: Becoming a Computer scientist

Multiple Choice Quiz

Knowledge recall on topic (15 marks):

Bi-weekly Quiz

1 Extended written response

Various retrieval questions (MCQs)

Tracked using RED/AMBER/GREEN Tracker

| Emerging                                                                     | Achieving                                                              | Excelling                                                                       |
|------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| I can identify a sprite                                                      | I can delete and replace sprites                                       | I can create new sprites                                                        |
| I can use simple scratch blocks to sequence instructions and solve a problem | can trigger the code with events to make it interactive                | I can use variables to store different information like score, time, player etc |
| I can use the if block to make choices                                       | I can add arithmetic operations to if blocks to solve complex problems | I can use both arithmetic and logic operations to solve complex problems        |
| I can identify hardware and software                                         | I can explain inputs, process and outputs of a computer system         | I can explain how inputs, process and output work on real world systems.        |
| I can convert 4-digit binary to decimal                                      | I can convert 4-digit decimal to binary                                | I can convert up to 8-digit binary to decimal                                   |

# How does a computer work: Spring Term

## *Golden Nuggets and Work Hard*

|    | <b>Golden Nugget</b>                                                                              | <b>Work Hard</b>                                                                                                                       |
|----|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Identify and name Sprite/ Script group/Sprite/Script area/Stage/Script Blocks on a Scratch Window | Create, delete and change sprites in Scratch and make them move some steps.                                                            |
| 2  | Understand the meaning of Variables and Scoring                                                   | Use variables to add Lives and scoring to a Dragon Sprite.                                                                             |
| 3  | Understand the purpose of repeat loops and procedures (“broadcasts”)                              | Make the Mouse move around the square 4 times. Broadcast and switch sprite costumes in different blocks.                               |
| 4  | Be able to read X,Y co-ordinates and use random numbers                                           | Use the X,Y co-ordinates to move sprites around the stage and to different positions.                                                  |
| 6  | Be able to create Shooting and Jumping games in Scratch                                           | Use If, random, variable, loops to create a shooting and jumping game.                                                                 |
| 7  | Recognise different hardware and software used in a computer system                               | Label and match different hardware and software. Identify input, process and output for different devices and real world applications. |
| 8  | Identify and explain the main components of a CPU.                                                | Explain the acronym RAM and ROM. Know the difference between Memory and Storage. Explain the steps of the FDE cycle.                   |
| 9  | Understand binary 1,0 and why computer data is represented using it.                              | Make simple cards using binary 1,0. Encode symbols and shapes in binary. Convert from Decimal to Binary and Binary to Decimal.         |
| 10 | Understand numbers are added by the computer using binary                                         | Practice CISCO binary addition. Convert 4 digit binary to whole number and vice versa.                                                 |

# How is your progress measured in class in Computer Science in Summer Term?

## Summer: Becoming a Computer scientist

|                                                                                                                                        |                                       |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Multiple Choice Quiz                                                                                                                   | Knowledge recall on topic (15 marks): |
| <p>Bi-weekly Quiz<br/>1 Extended written response<br/>Various retrieval questions (MCQs)<br/>Tracked using RED/AMBER/GREEN Tracker</p> |                                       |

| Emerging                                                                                                                                                                                                                                                                                           | Achieving                                                                                                                                                                                                                                                                                                                           | Excelling                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>I can explain the term Computational thinking</p> <p>I can identify patterns in a giving context.</p> <p>I can identify what needs to be abstracted in order to make it easy to solve a problem.</p> <p>I can plan simple mimics using buttons, input/output, delay, start/stop statements.</p> | <p>I can explain the term Computational thinking and decomposition with examples.</p> <p>I can use patterns and similarities to solve a simple problems.</p> <p>I can use abstraction method to solve simple problems.</p> <p>I can control a number of mimics using using buttons, input/output, delay, start/stop statements.</p> | <p>I can plan a game using decomposition strategy to make it easy to program.</p> <p>I can use patterns and similarities to solve complex problems.</p> <p>I can use abstraction method to solve complex problems.</p> <p>I can explain what is wrong with an algorithm and fix some of the errors.</p> |

# How does a computer work: Summer Term *Golden Nuggets and Work Hard*

|    | <b>Golden Nugget</b>                                                                                  | <b>Work Hard</b>                                                                                                                                     |
|----|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Understand the term Computational thinking and Decomposition as one method of solving problems.       | Explain the meaning of decomposition. Plan a game using decomposition to make it easy to solve.                                                      |
| 2  | Understand the term Computational thinking and Pattern Recognition as one method of solving problems. | Explain the meaning of Pattern Recognition. Check for patterns and similarities in different context and scenarios.                                  |
| 3  | Understand the term Computational thinking and Abstraction as one method of solving problems.         | Explain the meaning of Abstraction. Compare maps, pictures, texts that have been abstracted in order to help solve a problem.                        |
| 4  | Understand the term Computational thinking and Algorithm as one method of solving problems.           | Explain what an algorithm is. Create algorithms to solve specific problems. Example: Making a cup of tea, toasting bread etc.                        |
| 6  | Understand the term Computational thinking and Flowchart as a way to represent an algorithm.          | Identify the different flowchart symbols and use them to sequence instructions in order to solve problems. Example : Flowol Autohome Control Systems |
| 7  | What are control systems? Understand that real-life systems such as Robot can be controlled.          | Open and use Flowol easily. Control the Robot Mimic using buttons, input/output, delay, start/stop statements.                                       |
| 8  | Understand that real life systems such as Lighthouse, can be controlled using the                     | Control the Lighthouse Mimic using buttons, input/output, delay, start/stop, looping statements.                                                     |
| 9  | Understand that real-life system such as - Pelican Crossing can be controlled.                        | Control the Pelican Crossing Mimic using buttons, input/output, delay, start/stop, sensors, looping statements.                                      |
| 10 | Understand that real-life system such as - Autohome can be controlled.                                | Control the Autohome Mimic using buttons, input/output, delay, start/stop, sensors, looping statements.                                              |

# Y8 Computer Science

## How can variety of computational problems be solved using modular structures?

Problem solving real life scenarios in Pygame; control objects using functions, arrays etc

## How do computers share data over the internet?

What is a network?

## How do computers process data, text, images etc?

Define Binary; apply binary conversions

## How do you build a computer?

Inputs, processes and outputs; introduction of computer components

## Why is selection important in problem solving and in which situations should it be considered?

Understand IF and nested IF statements

## What are datatypes and why are they important when storing data.?

Understand Integer, float, Boolean and real . Create simple python programs using input, variables and correct datatypes.

## What are variables and how do they help programmers store correct data ?

Variables, Datatypes , represent algorithms and simple pseudocodes

## Understand how to present digital information using a website

HTML, CSS, Navigation, Styling and User Input. Test and Evaluate website

## How does the data collected by the computer be read and analysed to solve problems of the users or give insight into user needs.

Data collection, structure data, calculation and presentation

## Why do we use different network types?

Network topology, advantages and disadvantages.

## How do storage devices use binary?

How can you apply your knowledge of binary to other storage devices?

## Understand the need for arithmetic & logical operations in solving problems.

Addition, Subtraction, Multiplication, Division, <,>,== write simple programs using the above operators

# How is your progress measured in class in Computer Science in Autumn Term?

## Autumn: Becoming a Computer scientist

|                      |                                                                                                                                                                       |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple Choice Quiz | Knowledge recall on topic (15 marks):<br>Bi-weekly Quiz<br>1 Extended written response<br>Various retrieval questions (MCQs)<br>Tracked using RED/AMBER/GREEN Tracker |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Emerging                                                                                         | Achieving                                                                                    | Excelling                                                                                                               |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| I can follow simple instructions to complete a basic task like creating folders and saving files | I can use correct terms to explain how my files are organised and identify some file formats | I can correctly organise my files into my local folders/teams or One drive and name them according to their file types. |
| I can write a simple pseudocode like making a cup of tea                                         | I can logically plan a pseudocode based on simple tasks or scenarios                         | I can represent pseudocodes in a flowchart and explain the solution                                                     |
| I can identify and define a variable in a n algorithm                                            | I can define variables in a simple algorithm and identify some datatypes.                    | I can use variables with correct datatypes and operators in an algorithm                                                |
| I can explain a linear search algorithm                                                          | I can explain both linear and binary search algorithms                                       | I can differentiate between a linear and binary search algorithm                                                        |

# How does a computer work: Autumn Term

## *Golden Nuggets and Work Hard*

|   | <b>Golden Nugget</b>                                                                                                          | <b>Work Hard</b>                                                                                                                                                     |
|---|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Recall how to save and store my work on the computer locally and remotely.                                                    | Create YR8 folders for different subject areas and begin to save files into them using correct labels. Learn to use One drive and Teams to manage files and folders. |
| 2 | Know the logical steps to follow in solving a problem using pseudocode.                                                       | Write some pseudocodes using simple English language statements                                                                                                      |
| 3 | Know flowchart symbols and use them to plan and solve a problem                                                               | Draw flowcharts with simple statements using correct flowchart symbols connected together.                                                                           |
| 4 | Know how to ask user to get data in and out of a computer using python input and output statements                            | Solve simple problems using variables, input and output statements in python.                                                                                        |
| 5 | Understand what linear search is and how it works.                                                                            | Explain how computers find a single piece of data from billions of data stored inside it?                                                                            |
| 6 | Know that linear search is useful when searching through a short list.                                                        | Understand the advantages and disadvantages of linear search.                                                                                                        |
| 7 | Understand what binary search is, how it works and when it can be used.                                                       | When so many data are stored, how can we improve the time it takes to find a single piece of data? Explain the mechanisms of a linear search algorithm               |
| 8 | Know that binary search is used to search through a long list and it uses divide-and-conquer process to speed up the process. | List and explain the advantages and disadvantages of binary search.                                                                                                  |

# How is your progress measured in class in Computer Science in Spring Term?

## Spring: Becoming a Computer scientist

### Multiple Choice Quiz

Knowledge recall on topic (15 marks):

- Bi-weekly Quiz
- 1 Extended written response
- Various retrieval questions (MCQs)
- Tracked using RED/AMBER/GREEN Tracker

| Emerging                                                                                                                                                                       | Achieving                                                                                                                                                                           | Excelling                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>I can identify hardware and software</p> <p>I can convert 4-digit binary to decimal</p> <p>I can explain a network and identify the devices needed in a simple network.</p> | <p>I can explain inputs, process and outputs of a computer system</p> <p>I can convert 4-digit decimal to binary</p> <p>I can plan a network by correctly match all the devices</p> | <p>I can explain how inputs, process and output work on real world systems.</p> <p>I can convert up to 8-digit binary to decimal</p> <p>I can recommend or give account of why different networks are used for different reasons</p> |

# How does a computer work: Spring Term

## *Golden Nuggets and Work Hard*

|   | <b>Golden Nugget</b>                                                              | <b>Work Hard</b>                                                                                                                       |
|---|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Recognise different hardware and software used in a computer system               | Label and match different hardware and software. Identify input, process and output for different devices and real world applications. |
| 2 | Identify and explain the main components of a CPU.                                | Explain the acronym RAM and ROM. Know the difference between Memory and Storage. Explain the steps of the FDE cycle.                   |
| 3 | Understand binary 1,0 and why computer data is represented using it.              | Make simple cards using binary 1,0. Encode symbols and shapes in binary. Convert form Decimal to Binary and Binary to Decimal.         |
| 4 | Understand numbers are added by the computer using binary                         | Practice CISCO binary addition. Convert 4-digit binary to whole number and vice versa.                                                 |
| 5 | Know what Internet means and understand some keywords used to describe a network. | Match keywords to their meaning. Locate web addresses and identify their domain name, IP address and Location.                         |
| 6 | Understand that cables are used to connect the world.                             | Compare different cables. Determine their download and upload speed.                                                                   |
| 7 | What are the ways networks are arranged and why?                                  | Understand and compare different types of network topologies(arrangement) and state why they are suited for different purposes.        |
| 8 | Use pictures to design a simple network                                           | Connect the network devices to a LAN and explain your choice of cables, switches or hubs and Mbps connection speed.                    |

# How is your progress measured in class in Computer Science in Summer Term?

## Summer: Becoming a Computer scientist

### Multiple Choice Quiz

Knowledge recall on topic (15 marks):

- Bi-weekly Quiz
- 1 Extended written response
- Various retrieval questions (MCQs)
- Tracked using RED/AMBER/GREEN Tracker

### Emerging

### Achieving

### Excelling

I can draw using shape tools

I can modify shapes using shape tools

I can combine and modify multiple shapes tools

I can work and combine multiple objects using union

I can work and combine multiple objects using intersection

I can work and combine multiple objects using difference

I can use paths to create a shape

I can modify paths and create a new shape

I can combine straight and curved paths to produce new shape.

I can plan a simple design

I can plan and make a simple design

I can plan, edit and evaluate designs to suit the intended purpose.

# How does a computer work: Summer Term

## *Golden Nuggets and Work Hard*

|   | <b>Golden Nugget</b>                                                                                        | <b>Work Hard</b>                                                                                                                                               |
|---|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Understand Vector Graphics and working with shapes. Draw and modify shapes using shape tools                | Select shapes and modify the fill, outline colour, and outline width. Alter the outline style.                                                                 |
| 2 | Working with multiple objects. Use tools to align, distribute, group, and combine objects.                  | Combine two shapes using union, intersection, and difference                                                                                                   |
| 3 | Working with Paths. Understand how to create and modify straight and curved paths                           | Create and modify straight and curved paths<br>Change shapes to paths and edit them                                                                            |
| 4 | Getting into shapes. Choose a project and plan a design.                                                    | Combine tools and techniques to create a vector image.<br>Evaluate your project against its given purpose                                                      |
| 5 | Behind the scenes. Investigate how vector images are stored and alter them.                                 | Change an object by modifying its markup<br>Plan improvements and implement them to develop a project                                                          |
| 6 | Showcase and compare vector images with bitmaps images.                                                     | Outline which image type best suits which uses<br>Evaluate your image against a rubric                                                                         |
| 7 | Understand how to setup a website, add content and style it using html tags                                 | Open notepad and add basic tags of a website<br><html> </html>, <title></title>,<body> </body>etc                                                              |
| 8 | Understand how to add, style navigation and add more pages                                                  | Add CSS file for page styling and navigation.                                                                                                                  |
| 9 | Understand how to add user input forms to make your website interactive.<br>Test and evaluate your website. | Use html to create a form : <form name="contactForm"><br>Explain what you have done, explaining the different languages used for each section of your website. |

Be familiar and able to use  
 $=, !=, <, >, \&, \&, \&, \&, \&, \&$

3.2 Programming  
 3.2.4 Relational operations in programming language

3.2 Programming  
 3.2.5 Boolean operations  
 AND, NOT, OR

Know and use arithmetic operations

3.2 Programming  
 3.2.3 Arithmetic operations in a programming language  
 $+, -, /, *, \text{DIV}$  and MOD

Use simple list and array datastructures in design of solutions to simple programs

3.2 Programming  
 3.2.6 & 3.2.7  
 Input/Output / Data structures

Know how different statement types can be combined in programs eg variable, constant, assignment, iteration, selection and subroutine

3.2 Programming  
 3.2.2 Programming Concepts

Understand and be able to use length, position, substring, concatenation etc

3.2 Programming  
 3.2.8 String handling operations

Understand the use of integer, real, boolean, character and string types

3.2 Programming  
 3.2.1 data types

Understand, explain and compare linear and binary search algorithms

3.1 Fundamentals of Algorithm  
 3.1.3 Searching algorithms

Project based encompassing 3.3/3.4/3.5/3.6/3.7 /3.8 Scenarios

3.2.9/3.2.10/3.2.11  
 Random number Structured and Robust Programming

Understand that more than one way can be used to solve the same problem

3.1 Fundamentals of Algorithm  
 3.1.2 Efficiency of algorithms

Understand, explain and compare bubble and merge sort algorithm

3.1 Fundamentals of Algorithm  
 3.1.4 Sorting algorithms

Understand and explain the term algorithm. Explain simple algorithms in terms of their input, process and output

3.1 Fundamentals of Algorithm  
 3.1.1 Representing algorithms

# How is your progress measured in class in Computer Science in Autumn Term?

## Autumn: Becoming a Computer scientist

|                      |                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple Choice Quiz | Knowledge recall on topic (15 marks):<br>End of Unit Quiz<br>Various retrieval questions (MCQs) and Extended questions<br>Tracked using RED/AMBER/GREEN Tracker |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Emerging                                                                                                                                                                                                                   | Achieving                                                                                                                                                                                                                                       | Excelling                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>I can define and identify an algorithm</p> <p>I can explain the term decomposition</p> <p>I can identify a flowchart and pseudocode in an algorithm.</p> <p>I can explain how a linear search and bubble sort works</p> | <p>I can plan a simple algorithm that works</p> <p>I can explain decomposition and pattern recognition</p> <p>I can use a flowchart and pseudocode to plan a simple algorithm</p> <p>I can explain how a binary search and merge sort works</p> | <p>I can plan and refine complex algorithms to make them work better.</p> <p>I can explain decomposition, pattern recognition and abstraction</p> <p>I can use a flowchart and pseudocode to plan several algorithms</p> <p>I can explain the advantages and disadvantages of both algorithms.</p> |

# How does a computer work?

## Autumn Term Golden Nuggets and Work Hard

|   | Golden Nugget(What?)                                                                                                                    | Work Hard(How?)                                                                                                                                                           |
|---|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Understand the term algorithm and be aware that an algorithm is not the same as a computer program                                      | Define and plan a simple algorithm using simple English language and flowcharts.                                                                                          |
| 2 | Understand and explain the term decomposition and abstraction                                                                           | Define the term decomposition and break down a complex scenarios into smaller sub-problems so that each accomplishes an identifiable task. Remove unnecessary information |
| 3 | Understand how to use pseudocode and flowchart to represent an algorithm.                                                               | Solve a number of problems using both pseudocode and flowchart.                                                                                                           |
| 4 | Understand simple algorithms in terms of their input, processing and output.                                                            | Identify where inputs, processing and outputs are taking place within several algorithms.                                                                                 |
| 5 | Determine the purpose of simple algorithms using PRIMM model                                                                            | Copy and type several programs. Use trace table to inspect algorithms and state their purpose.                                                                            |
| 6 | Understand that algorithms can be written in several ways to solve the same problem. Know that this is called Efficiency of algorithms. | Check the time efficiency of different algorithms such as for loop and while loop. Does increasing the input increase the running time or not?                            |
| 7 | Understand and explain how linear and binary search algorithms works                                                                    | Show the steps of both algorithm by stepping through (for linear search) and splitting ordered list( for binary search)                                                   |
| 8 | Understand and explain how bubble and merge sort algorithms work                                                                        | Show the steps of both algorithm by comparing pairs (for bubble sort ) and split and merge ( for merge sort)                                                              |

# How is your progress measured in class in Computer Science in Spring Term?

## Autumn: Becoming a Computer scientist

|                      |                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple Choice Quiz | Knowledge recall on topic (15 marks):<br>End of Unit Quiz<br>Various retrieval questions (MCQs) and Extended questions<br>Tracked using RED/AMBER/GREEN Tracker |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Emerging                                                                                                                                                                                                                                                                     | Achieving                                                                                                                                                                                                                                                                                           | Excelling                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I can identify 5 datatypes used in python<br><br>I can define variables and constant in a simple program<br><br>I can use a for loop in a simple program<br><br>I can identify nested selection and iteration<br><br>I can identify arithmetic, logical and string functions | I can use 5 datatypes used in python in simple programs<br><br>I can use variables and constants in more than 1 program<br><br>I can use a for loop and while loop in more than 1 program<br><br>I can use nested selection in a program<br><br>I can use arithmetic operations in several programs | I can use 5 datatypes used in python in a variety of programs<br><br>I can use variables and constants in a number of programs<br><br>I can combine for loop and while loop in a number of programs<br><br>I can use nested selection and nested iteration in a program<br><br>I can use logical and string functions in several programs. |

# How does a computer work?

## *Spring Term Golden Nuggets and Work Hard*

| 3.2 | Golden Nugget(What?)                                                                                              | Work Hard(How?)                                                                                                               |
|-----|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1   | Understand the concept of a data type                                                                             | Identify and match different data types correctly                                                                             |
| 2   | Know how to use integer, real, Boolean, character and string                                                      | Use correct data types in simple programs                                                                                     |
| 3   | Understand and know how to use and combine variable and constant declaration, assignment, iteration and selection | Write programs that include statement types combining variable and constant declaration, assignment, iteration and selection. |
| 4   | Understand a loop and why it is needed in programs. Understand a definite or count controlled loop.               | Interpret statements using count - controlled loop such as for loop.                                                          |
| 5   | Understand an indefinite or condition controlled loop.                                                            | Interpret statements using condition - controlled loop such as while loop.                                                    |
| 6   | Understand nested selection and nested iteration                                                                  | Interpret statements using nested selection statements and nested iteration                                                   |
| 7   | Know different arithmetic and relational operations                                                               | Use arithmetic and relational operations in programs                                                                          |
| 8   | Use Boolean operations in python                                                                                  | Use Boolean operations in programs                                                                                            |
| 9   | Understand and use string handling operations: length, position, substring, concatenation                         | Use string functions to extract and slice strings                                                                             |

# How is your progress measured in class in Computer Science in Summer Term?

## Autumn: Becoming a Computer scientist

|                      |                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple Choice Quiz | Knowledge recall on topic (15 marks):<br>End of Unit Quiz<br>Various retrieval questions (MCQs) and Extended questions<br>Tracked using RED/AMBER/GREEN Tracker |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Emerging                                                                                                                                                                                                                           | Achieving                                                                                                                                                                                                                                | Excelling                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>I can use simple random function to generate numbers</p> <p>I can define a subroutine</p> <p>I can show the difference between 1D and 2D array</p> <p>I can apply some programming skills that I have learnt to my project.</p> | <p>I can use random function in a program</p> <p>I can use a subroutine in a simple program</p> <p>I can get, print and delete data from 1D array</p> <p>I can apply reasonable programming skills that I have learnt to my project.</p> | <p>I can combine random function with other program statements</p> <p>I can use a subroutine with other statements</p> <p>I can define, get, print and delete data from a 2D array</p> <p>I can apply variety of programming skills that I have learnt to my project.</p> |

# How does a computer work?

*Summer Term Golden Nuggets and Work Hard*

|   | Golden Nugget(What?)                                                                                                                                     | Work Hard(How?)                                                    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1 | Know about random number generation                                                                                                                      | Use random numbers within your computer programs                   |
| 2 | Understand subroutines, their advantages and disadvantages.                                                                                              | Define subroutines and use simple examples.                        |
| 3 | Understand 1D and 2D arrays                                                                                                                              | Use 1D and 2D arrays in the design of solutions to simple problems |
| 4 | Understand how to define Records                                                                                                                         | Show simple record definition                                      |
| 5 | Understand <b>Structured</b> programming in a project                                                                                                    | Apply all programming skills to develop a structured program       |
| 6 | Understand <b>Robust</b> programming in a project                                                                                                        | Apply all programming skills to develop a Robust program           |
| 7 | Understand <b>Secure</b> programming in a project                                                                                                        | Apply all programming skills to develop a secure program           |
| 8 | Understand program testing, error correction, test table. Types of errors – syntax and logical. Types of test data- normal, boundary and erroneous data. | Test the program and data to ensure the entire program works.      |